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We investigate the quantum kicked rotor in resonance subjected to momentum measurements with a Lévy
waiting-time distribution. We find that the system has a sub-ballistic behavior. We obtain an analytical expres-
sion for the exponent of the power law of the variance as a function of the characteristic parameter of the Lévy
distribution. We also connect the anomalous diffusion found with a fractional dynamics.
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I. INTRODUCTION

During the last decades it has been possible to obtain
samples of atoms at temperatures in the nK range �1� �optical
molasses� using resonant or quasiresonant exchanges of mo-
mentum and energy between atoms and laser light. This
spectacular experimental progress has been accompanied
with the development of the interdisciplinary fields of quan-
tum computation and quantum information. On the other
hand, application of non-Gaussian statistics such as the Lévy
distribution are more and more frequently found in different
fields �2�.

An example of a physical problem allowing a quantitative
test of theories constructed from Lévy statistics in quantum
optics is a new description of nonergodic or subrecoil cool-
ing �3�. The basic idea of this approach is to create a trap in
momentum space, which the atoms can reach during their
random walk. When the atoms fall in this trap �dark states�
they do not feel the external field. The probability to fall in
this trap satisfies a power law, and this is as if the atoms do
no feel the external field with the same probability.

In this frame simple quantum systems, such as the quan-
tum kicked rotor �QKR� �4� and the quantum walk �QW� �5�
are extremely useful as models for both quantum computa-
tion and subrecoil cooling.

The behavior of the QKR has two characteristic modali-
ties: dynamical localization �DL� and ballistic spreading of
the variance in resonance. These different behaviors depend
on whether the period of the kick is a rational or irrational
multiple of 2�. For rational multiples the behavior of the
system is resonant and the average energy grows ballisti-
cally; for irrational multiples the average energy of the sys-
tem grows, for a short time, in a diffusive manner and after-
wards DL appears. Quantum resonance is a constructive
interference phenomena and DL is a destructive one. The DL
and the ballistic behavior have already been observed experi-
mentally �6,7�.

In Ref. �8� we investigated the QKR in resonant regime
and the usual QW when both systems were subjected to de-
coherence with a Lévy waiting-time distribution. In the case
of the QKR the model had two strength parameters whose
action alternated in such a way that the time interval between
them followed a power-law distribution. In the case of QW

the model used two evolution operators whose alternation
followed the same power-law distribution. We showed that
this noise in the secondary resonances of the QKR and in the
usual QW produced a change from ballistic to sub-ballistic
behavior. This change of behavior is similar to that obtained
for both systems when they are subjected to an aperiodic
Fibonacci excitation �9,10�. In all the above cases the sub-
ballistic behavior is characterized by the time dependence of
the variance, i.e., �2�����2c, with 0.5�c�1. In a more re-
cent paper �11� we have studied the QW subjected to mea-
surements with a Lévy waiting-time distribution and we
found that the system had a sub-ballistic behavior. We also
obtained an analytical expression for the exponent of the
power law of the variance as a function of the characteristic
parameter of the Lévy distribution.

In this paper we present a simple model that allows an
analytical treatment to understand the sub-ballistic behavior
previously reported in Ref. �8�. We shall show that the tem-
poral sequence of the decoherence, and not its intensity, is
the main cause of this unexpected dynamics. With this aim
we investigate the QKR when measurements are performed
on the system with waiting times between them following a
Lévy power-law distribution. We show that this type of noise
indeed produces sub-ballistic behavior. We obtain analyti-
cally a relation between the exponent of the variance and the
characteristic parameter of Lévy distribution. These results
are identical to the ones obtained in Ref. �11�, showing again
another aspect of the similarity between QKR and QW, as
pointed out in previous papers �8,9,12,13�. In addition, the
toy model developed in this work shows that a quantum
system in combination with a Lévy stochastic process may
produce a fractional dynamics for the averaged behavior.

II. LÉVY QUANTUM KICKED ROTOR

The QKR is one of the most simple and best investigated
models whose classical counterpart displays chaos. It has the
following Hamiltonian:

H��� =
P2

2I
+ K cos ��

t=1

�

��� − t� , �1�

where P is the angular momentum operator, I is the moment
of inertia, K is the strength parameter, � is the angular posi-
tion. The external kicks occur at times �= t with t integer and
unity period. In the angular momentum representation, P���*Corresponding author. alejo@fing.edu.uy
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=�	���, the wave vector is �
����=��=−�
� a������� and the

average energy is E���= 	
�H�
�=���=−�
� �2�a�����2, where

�=	2 /2I. Using the Schrödinger equation the quantum map
is readily obtained from the Hamiltonian �1�,

a��t + 1� = �
j=−�

�

U�jaj�t� , �2�

where the matrix element of the time step evolution operator
U��� is

U�j = i−�j−��e−ij2�/	Jj−���� , �3�

Jm is the mth order cylindrical Bessel function, and its argu-
ment is the dimensionless kick strength �
K /	. The reso-
nance condition does not depend on � and takes place when
the frequency of the driving force is commensurable with the
frequencies of the free rotor. Inspection of Eq. �3� shows that
the resonant values of the scale parameter � /	 are the set of
the rational multiples of 2�, i.e., � /	=2�p /q. When p /q is
an integer the resonance is called principal and when it is a
noninteger rational it is called secondary.

The dynamics of the Lévy quantum kicked rotor �LQKR�
will be generated by a large sequence of two time-step uni-
tary operators U0 and U1 as was done in a previous work �8�.
But now U0 is the “free” evolution of the QKR in resonance
and U1 is the operator that measures the angular momentum
of the QKR. The time interval between two applications of
the operator U1 is generated by a waiting-time distribution
�T�, where T is a dimensionless integer time step; see Fig.
1.

The detailed mechanism to obtain the evolution is given
in �8�. We take �T� in accordance with the Lévy distribution
�2� that includes a parameter �, with 0���2. When �
�2 the second moment of  is infinite, when �=2 the Fou-
rier transform of  is the Gaussian distribution and the sec-
ond moment is finite. Then this distribution has no charac-
teristic size for the temporal jump, except in the Gaussian
case. The absence of scale makes the Lévy random walks
scale-invariant fractals. This means that any classical trajec-
tory has many scales but none in particular dominates the
process. This distribution appears, for example, in quantum
optics �3� as an appropriate tool to describe cooled atomic
samples in terms of a competition between a trapping pro-
cess �the atom falls in the optical trap� and a recycling pro-
cess �the atom leaves the trap and eventually returns to it�.
The most important characteristic of the Lévy noise is the
power-law shape of the tail, accordingly in this work we use
the waiting-time distribution

��� =
�

�1 + ��� 1, 0 � � � 1,

�1

�
�+1

, � � 1. � �4�

To obtain the time interval T we sort a continuous variable �
in agreement with Eq. �4� and then we take the integer part Ti
of this variable �8�.

In what follows we assume that the resonance condition
of the QKR is satisfied; for the sake of simplicity we take
� /	=2� in such a way that the operator U0 corresponds to
the first principal resonance. This choice does not imply a
loss of generality for our results as we shall show below.

Let us suppose that the wave function is measured at the
time t, then it evolves according to the unitary map Eq. �2�
during a time interval T, and again at this last time t+T a
new measurement is performed. In Fig. 1 we present a path
diagram of the state evolution. It shows four time steps when
the measurements are performed, between measurements
there is an unitary evolution. When the measurement is per-
formed the wave function collapses in a momentum state.
The resulting states after successive measurements need not
be contiguous states as in the QW because all transitions are
possible.

In the figure we present a generic and arbitrary path with
bold line. From this diagram we can write a dynamical equa-
tion for the probabilities of the LQKR momenta. To begin
note that, starting from the eigenstate �0�, the probability that
the wave function collapses in the eigenstate �j� after a time
T, due to a momentum, measurement is

Pj�T� 
 �aj�T��2. �5�

The momentum distribution Pj depends on the initial state
and on the time interval T because of the collapse of the
wave function, and it will play the role of transition prob-
abilities for the global evolution. The mechanism used to
perform momentum measurements assures that these distri-
butions will repeat themselves around the new momentum.
Then it is straightforward to build the probability distribution
Pj at the new time t+T as a convolution between this distri-
bution at the time t and the conditional probability:

FIG. 1. Paths of the LQKR wave function as a function of the
angular momentum l. The measurements are performed at times Ti

and the wave function collapses at these times. Between measure-
ments the system has a unitary quantum evolution
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Pl�t + T� = �
j=−�

�

ql−j�T�Pj�t� , �6�

where ql−j are the transition probabilities from state j to state
l and the sum is extended between −� and +� because all
the transitions are possible. To calculate ql−j the original dy-
namical equations �2� and �3� and the properties of the Bessel
function are used to obtain a connection between the initial
pure state after a measurement and all possible final states
before the next measurement,

ql−j�T� = �Jj−l��T��2. �7�

Equation �6� is a sort of master equation, but not strictly
because of the time dependence of the transition probabili-
ties.

We need to calculate the first and second moments of
Pj�t�. We choose the method of the generating function to
obtain the general expression of the moments. We define
G�z , t� as

G�z,t� = �
j=−�

�

zjPj�t� , �8�

where we shall take the auxiliary variable z
ei�, with �
real. It is easy to prove using Eq. �6� that

G�z,t + T� = G�z,t�J0�2�T sin��/2�� . �9�

The generic moment is calculated as ml�t�
G�l��1, t� where
�l� indicates differentiation with respect to z. Then using this
equation and Eq. �9� the following maps for the first two
moments are obtained:

m1�t + T� = m1�t� + m1q�T� , �10�

m2�t + T� = m2�t� + 2m1�t�m1q�T� + m2q�T� , �11�

where

m1q�T� = �
l=−�

l=�

lql�T� , �12�

m2q�T� = �
l=−�

l=�

l2ql�T� . �13�

Note that m1q�T� and m2q�T� are the first and second mo-
ments of the unitary evolution between measurements. From
these expressions and using Eq. �7� the following results are
obtained: m1q�T�=0 and m2q�T�= 1

2�2T2. Therefore the global
variance �2�t�=m2�t�−m1

2�t� verifies that

�2�t + T� = �2�t� + �q
2�T� , �14�

where �q
2�T�=m2q�T�−m1q

2 �T�= 1
2�2T2 is the variance associ-

ated to the unitary evolution between measurements. Note
that the value of the coefficient of T2 is a consequence of
using the principal resonance but the time dependence re-
mains unchanged for any other higher resonance, as was
proved in Ref. �4�. From these last equations is easy to show
that

�2�t� =
1

2
�2�

i=1

N

Ti
2, �15�

where

t = �
i=1

N

Ti, �16�

and N is the number of measurements performed. These re-
sults are generic, now we shall calculate the average of Eq.
�15�,

	�2�t�� =
1

2
�2t

	Ti
2�

	Ti�
, �17�

where the relation t= 	Ti�	N� was used. The first and second
moments of the waiting time for our Lévy distribution, Eq.
�4�, are

	Ti� =
�

� + 1��
1

2
+

t1−� − 1

1 − �
 , � � 1,

�1

2
+ ln�t� , � = 1, � �18�

	Ti
2� =

�

� + 1��
1

3
+

t2−� − 1

2 − �
 , � � 2,

�1

3
+ ln�t� , � = 2. � �19�

Substituting these expressions in Eq. �17� and for a large
time,

	�2�t�� =
1

2
�2� t2, if 0 � � � 1,

t�3−��, if 1 � � � 2.
� �20�

Therefore when t→� the variance behaves as 	�2�t��� t2c

where

c = � 1, if 0 � � � 1,

1

2
�3 − �� , if 1 � � � 2. � �21�

This result shows that measurements do not break com-
pletely the coherence of the system on a time scale that in-
cludes several of them. For 0���1 the ballistic behavior is
preserved as in the usual resonant QKR, and for 1���2 it
is lost and the sub-ballistic behavior takes place. When �
=2 the system has a diffusive behavior as in the usual
Brownian motion. From the fact that the exponent c does not
depend on � it follows that the results are valid for both
primary and secondary resonances. However the exponent c
depends on the microscopic law of evolution �q

2�T��T2, but
other types of unitary quantum evolution have also been
found for similar systems �9,10,14�. Then, we may pose the
question if there exists a relation between the time depen-
dence of �q

2�T� in the quantum unitary evolution between
measurements and the exponent c of the power law for the
averaged variance. To answer this question we shall suppose
a unitary quantum evolution that produces the following
variance:
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�q
2�T� � T�, �22�

where � is a constant. The reasoning to obtain the exponent
c can now be repeated; it is only necessary to calculate again
the new expression for a general � moment with the Lévy
waiting-time distribution, that is

	Ti
�� =

�

� + 1��
1

� + 1
+

t�−� − 1

� − �
 , � � � ,

� 1

� + 1
+ ln�t� . � = � � �23�

Then, in this generic case, for t→�, the exponent c is

c =
1

2�
� , if � � �,0 � � � 1,

�� − � + 1� , if � � �,1 � � � 2,

� , if � � �,0 � � � 1,

1. if � � �,1 � � � 2
� �24�

This expression shows that these systems can exhibit diffu-
sive, subdiffusive, ballistic, or sub-ballistic behaviors de-
pending on the values of � and �. In the theoretical frame of
fractional dynamics �15� Eq. �6� together with the Lévy dis-
tribution would generate a generalized master equation from
which a generic fractional diffusion equation �16� could be
built. This fractional dynamics approach has as an extreme
case the classical diffusion equation for �=�=2.

III. CONCLUSION

The experimental QKR system consists of a dilute sample
of ultracold atoms exposed to a one-dimensional spatially
periodic potential that is pulsed on periodically in time �to
approximate a series of delta function kicks� �6�. The quan-
tum resonances of the QKR have been experimentally ob-
served when interacting with a far-detuned standing wave of
laser light �6,7,17�.

The experimental realization of the LQKR is not more
difficult in principle than the experimental realization of the
QKR. It is enough to introduce intermittent decoherence
�with a Lévy waiting-time distribution� in the optical path of
the pulsed laser light of the QKR in some way, such as a
polarized sheet located in the optical path with random ori-
entation to introduce the Lévy distribution in the laser inter-
action with the trapped atoms, or a random modification in
the pumping pulses �e.g., by properly modifying the quality
factor of the laser, Q switching�, etc.

However, the LQKR could be thought of as modeling the
interaction of an atom with a field in the situation of subre-
coil laser cooling �3�. We could identify the decoherence
produced by the measurement in our model with the “deco-

herence” due to the absence of interaction with the field in
the dark state of the atom.

It is also possible that a new generation of optical devices
emerges through the use of new optical materials, such as
that recently reported in �18� where the step-length distribu-
tion can be specifically chosen. This material, called “Lévy
glass,” was used to produce a structure in which light per-
forms a Lévy flight and may prove useful for the implemen-
tation of the LQKR.

In this experimental frame, we studied the QKR subjected
to measurements with a Lévy waiting-time distribution. As
the Gaussian distribution is a particular case of the Lévy
distribution, our study is open to wider experimental situa-
tions. It is important to stress that as any experimental imple-
mentation faces the obstacle of decoherence due to environ-
mental noise and imperfections, to know the behavior of the
quantum devices will be fundamental for the design and con-
struction of the new technologies.

We showed numerically �8� that a Lévy noise does not
break completely the coherence in the dynamics of the QKR,
but produces a sub-ballistic behavior. There the system was
also a LQKR but the operators U0 and U1 corresponded to
the same secondary resonance with two different values of
the strength parameter � and these operators do not com-
mute. It is important to note that when the operators corre-
sponded to a primary resonance the ballistic behavior was
retained due to the commutativity between the operators U0
and U1 �8�. In the present model one of the operators is
unitary, and may correspond to any resonance of the QKR,
and the other is the measurement operator. These operators
also do not commute and again this is linked to the sub-
ballistic behavior. Then we can conclude that for the LQKR
the behavior of ��t� depends on the commutativity and the
waiting-time distribution, both models show the same phys-
ics. We developed a simple analytical theory to connect the
waiting-time parameter � with the exponent c. The LQKR
behaves like the QW subjected to the same measurement
process �11�, strengthening our previously established paral-
lelism between both systems �8,9,12,13�, where the resonant
QKR is interpreted as a QW in momentum space. The type
of model developed in this work shows that a quantum sys-
tem in combination with a Lévy stochastic process leads to
an anomalous diffusion and not to the well known diffusive
process of Browniam motion. Finally, this simple toy model
may help us to understand the connection between a frac-
tional approach and a generalized master equation.
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